

Preparation of national emission reduction and ambient air quality assessment programmes

EuropeAid/114743/D/SV/LT

Pilot air quality modelling study for Elektrėnai

Pilot study report

July 31, 2006 Vilnius

Contents

1.	SUM	[MARY	3
	1.1	Predicted concentrations of NO_2	3
	1.2	PREDICTED CONCENTRATIONS OF SO ₂	
	1.3	PREDICTED CONCENTRATIONS OF CO	
	1.4	PREDICTED CONCENTRATIONS OF PM ₁₀	3
2.	INTI	RODUCTION	5
3.	AIR	QUALITY STANDARDS	6
4.	STU	DY AREA	7
	4.1	SITE LOCATION AND SURROUNDING AREA	7
5.	POW	VER PLANT SITE AND EMISSIONS	10
	5.1	SITE LAYOUT AND MODELLED STACKS	10
	5.2	EMISSIONS DATA	
6.	MET	EOROLOGICAL DATA	11
7.	CON	SIDERATION OF LIMIT VALUES FOR THE PROTECTION OF HUMAN HEALTH	13
	7.1	PREDICTED CONCENTRATIONS OF NO _x	14
	7.2	PREDICTED CONCENTRATIONS OF SO ₂	
	7.5	PREDICTED CONCENTRATIONS OF CO	
	7.6	PREDICTED CONCENTRATIONS OF PM ₁₀	21
8.	DISC	CUSSION	22

1. Summary

In order to quantify the impact of emissions to air from Elektrenai power plant, Elektrenai, situated approximately 50km to the west of Vilnius, dispersion modelling of all emissions from the site was carried out using the ADMS 3 model (version 3.3.1.0). The dispersion modelling and results obtained are fully described in this report.

Emissions to air from all stacks were taken into account simultaneously in the dispersion modelling.

Modelling was carried out using a year of hourly sequential meteorological data obtained from the Vilnius site for 2005. The meteorological site is located approximately 50km east of the power plant site and so these data will give a very good representation of the meteorological conditions at the site.

The modelling was carried out to predict the process contribution (PC) to the ground level concentrations of all pollutants emitted from the site, for comparison with Air Quality Limit values.

1.1 Predicted concentrations of NO₂

There are no exceedences of either of the air quality limit values for NO_x.

The maximum predicted annual average NO_x concentration is $2.5\mu g/m^3$, 6% of the $40\mu g/m^3$ limit value for NO₂. The maximum predicted 99.79th percentile of hourly average NO_x is $191\mu g/m^3$, 96% of the $200\mu g/m^3$ limit value for NO₂.

1.2 Predicted concentrations of SO₂

There are no exceedences of the Air Quality Limit values for SO₂.

The maximum 99.73^{rd} percentile of hourly average SO₂ PC is $348\mu g/m^3$, 99% of the $350\mu g/m^3$ limit value.

The maximum 99.18th percentile of 24-hour average SO₂ PC is $81\mu g/m^3$, 65% of the $125\mu g/m^3$ limit value.

1.3 Predicted concentrations of CO

Neither the predicted 8-hour average PC of CO nor the maximum predicted annual average PC of CO is significant.

1.4 Predicted concentrations of PM₁₀

Neither the predicted 8-hour average PC of PM_{10} nor the maximum predicted annual average PC of PM_{10} is significant.

2. Introduction

A dispersion modelling study was carried out, using ADMS 3.3 (version 3.3.1.0), to assess the environmental impact of all emissions to air from the Elektrenai power plant, Elektrenai.

Section 3 presents the air quality standards with which the modelled results are to be compared. Details of the study, including a description of the site, are given in Section 4. Section 5 describes the site layout and emissions. The meteorological data input to the modelling are described in Section 6. Section 7 presents predicted concentrations for comparison with limit values for the protection of human health. A discussion of the implications of all of the modelling results is provided in Section 8.

3. Air Quality Standards

The EU Air Quality Limit values (EQOs) for nitrogen dioxide (NO₂), sulphur dioxide (SO₂) carbon monoxide (CO) and particulate matter (PM_{10}) are summarised in Table 3.1. The year by which each limit value is to be achieved is also shown in the table. The limit values are set for the protection of human health and take into account the effects of each pollutant on the health of those who are most sensitive to air quality.

Many of the Air Quality Limit values are specified in terms of the number of times during a year that a concentration measured over a short period of time (for example, 1 hour or 24 hours, as appropriate) is permitted to exceed a specified value. For example, the concentration of NO_2 measured as the average value recorded over a one-hour period is permitted to exceed the concentration of $200\mu g/m^3$ up to 18 times per year. Any more exceedences than this during a one-year period would represent a breach of the limit value.

It is convenient to model limit values of this form in terms of the equivalent percentile concentration value. A percentile is the concentration below which lie a specified percentage of concentration measurements. For example, consider the 98^{th} percentile of one-hour concentrations over a year. Taking all of the 8760 one-hour concentration values that occur in a year, the 98^{th} percentile value is the concentration below which 98% of those concentrations lie. Or, in other words, it is the concentration exceeded by 2% (100 - 98) of those hours, that is, 175 hours per year. Taking the NO₂ limit value considered above, allowing 18 exceedences per year is equivalent to not exceeding for 8742 hours or for 99.79% of the year. This is therefore equivalent to the 99.79th percentile value.

Substance	Limit value	Reference period and allowed exceedences	Date to be met
NO ₂	200µg/m ³	hourly mean not to be exceeded more than 18 times a year (modelled as 99.79 th percentile)	2010
1102	$40 \mu g/m^3$	annual mean	2010
SO ₂	350µg/m ³	1 hour average (not to be exceeded more than 24 times a year, assumed equivalent to a 99.73 rd percentile)	2005
502	$125 \mu g/m^3$	24 hour average (not to be exceeded more than 3 times per year, assumed equivalent to a 99.18 th percentile)	2005
СО	10mg/m ³	maximum daily running 8 hour mean	2005
PM ₁₀	50µg/m ³	24 hour average (not to be exceeded more than 35 times per year, assumed equivalent to a 90.41 st percentile)	2005
	40µg/m ³	annual mean	2005

 Table 3.1: EU Air Quality Standards for Air Pollutants – Protection of Human Health

4. Study area

4.1 Site location and surrounding area

Elektrenai power plant is located in Elektrenai, approximately 50km west of Vilnius. Figure 4.1 shows the site location and Figure 4.2 shows the locations of the stacks within the site.

A surface roughness length is used in the model to characterise the surrounding area in terms of the effects it will have on wind speed and turbulence, which are key components of the modelling. A value of 0.2 metres was used in this study, which represents an agricultural area and reflects the land use surrounding the site

Figure 4.1. Location of Elektrenai power plant

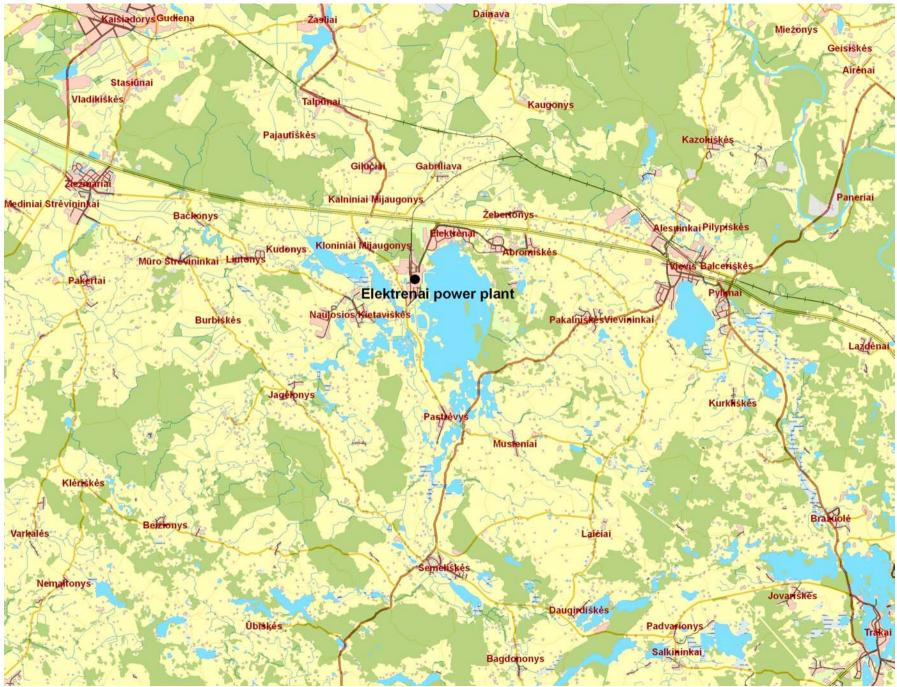
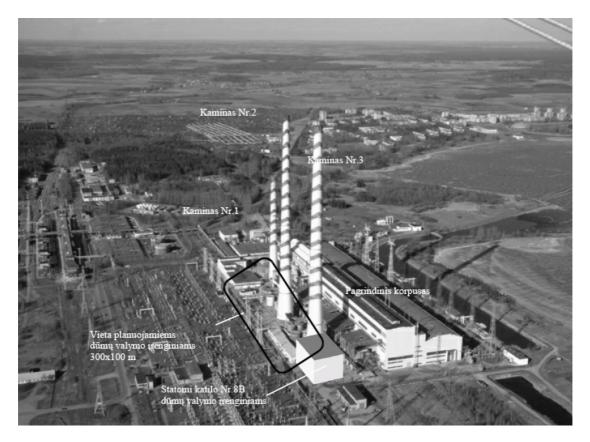



Figure 4.2. Locations of the power plant stacks

5. Power plant site and emissions

5.1 Site layout and modelled stacks

Three sources were included in the modelling. Table 5.1 gives the parameters of the three modelled sources.

Both long and short term impacts were modelled by applying a time varying profile to the emissions from the sources. The emissions vary both throughout the year and diurnally.

5.2 Emissions data

Emissions data were supplied for the following pollutants: oxides of nitrogen (NO_x), sulphur dioxide (SO₂) particulate matter (PM_{10}) and carbon monoxide (CO).

Table 5.2 presents the emissions rates of the pollutants for the three stacks.

Stack name	Location (x,y)	Height (m)	Diameter (m)	Efflux velocity (m/s)	Efflux temperature (°C)
Chimney 1	541610, 6070500	150	7	13.8	125
Chimney 2	541610, 6070600	250	6.5	32	125
Chimney 3	541630, 6070760	250	8	20.9	125

 Table 5.1: Modelled stack parameters

Table 5.2: Typical emission rates (g/s)

Stack name		Emissi	on rates	
Stack name	NO _x (as NO ₂)	SO ₂	СО	\mathbf{PM}_{10}
Chimney 1	775	2927	121	1.85
Chimney 2	134	506	20.9	1.00
Chimney 3	47.9	181	7.44	1.00

6. Meteorological data

Modelling was carried out using a year of hourly sequential meteorological data obtained from the Vilnius site for 2005. The data were provided as three-hourly values and have been interpolated to give an hourly sequential dataset.

The meteorological site is located approximately 50km east of the power plant site and so these data will give a very good representation of the meteorological conditions at the site.

The hours of meteorological data used in the analysis exclude hours of calm, hours of variable wind direction and unavailable data.

A summary of the data provided is given below in Table 6.1.

	Percentage used	Parameter	Minimum	Maximum	Mean
		Temperature (°C)	-22	30.8	6.8
2005	96.0	Wind speed (m/s)	0	13.0	3.0
		Cloud cover (oktas)	0	8	5

Table 6.1: Summary of meteorological data

The ADMS meteorological pre-processor, written by the UK Meteorological Office, uses these data to calculate the parameters required by the program. Figure 6.1 shows a wind rose for the site giving the frequency of occurrence of wind from different directions for a number of wind speed ranges, for 2005.

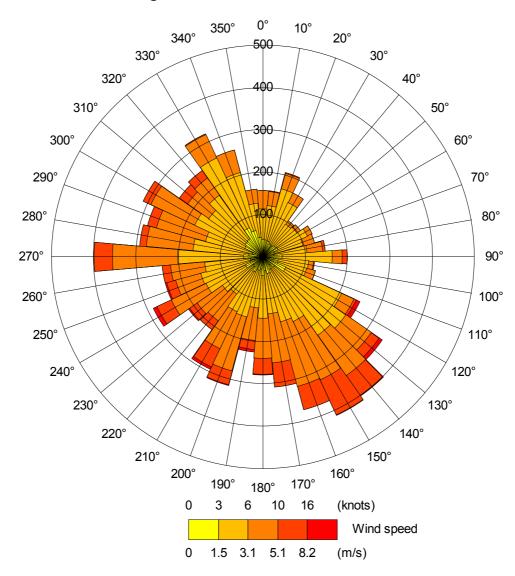


Figure 6.1: Wind rose for Vilnius, 2005

7. Consideration of limit values for the protection of human health

Concentrations were calculated on an output grid encompassing the entire area of any predicted exceedences, with a receptor spacing of 800m.

Modelling was carried out to predict the Process Contribution (PC) to the ground level concentrations of each pollutant from the power plant site. The significance of the total pollutant release was assessed by comparing the PC to the relevant Air Quality Limit value (AQO).

7.1 Predicted concentrations of NO_x

NO_x comprises NO and NO₂, and only NO₂ poses a threat to human health.

The PC to NO_2 concentrations cannot be directly calculated, as the NO_2 concentration depends on the concentrations of NO_x due to other sources in the area and the chemical reactions taking place to oxidise NO to NO_2 . Instead, the PC to NO_x concentrations has been calculated; when compared against the limit values for NO_2 , this value is an overestimate of the true PC of NO_2 .

The maximum predicted PC to concentrations of total NO_x are presented in Table 7.1, together with the locations at which they occur.

There are no exceedences of either of the air quality limit values for NO_x.

The maximum predicted annual average NO_x concentration is $2.5\mu g/m^3$, 6% of the $40\mu g/m^3$ limit value for NO_2 . The maximum predicted 99.79th percentile of hourly average NO_x is $191\mu g/m^3$, 96% of the $200\mu g/m^3$ limit value for NO_2 . As mentioned above, these values are an overestimate of the true PC of NO_2 .

Figures 7.1 and 7.2 show the 99.79 th percentile of hourly average PC and the annual average PC of NO_{x}

Year	Limit value	Measured as	Limit value value (NO ₂)	PC (total NO _x)	% of limit value	x, y
2005	Short-term AQO	99.79th percentile of hourly averages	200	191	96	545167, 6070834
2003	Long-term AQO	Annual average	40	2.5	6	544333, 6070000

Table 7.1: Maximum predicted concentrations of NO_x ($\mu g/m^3$)

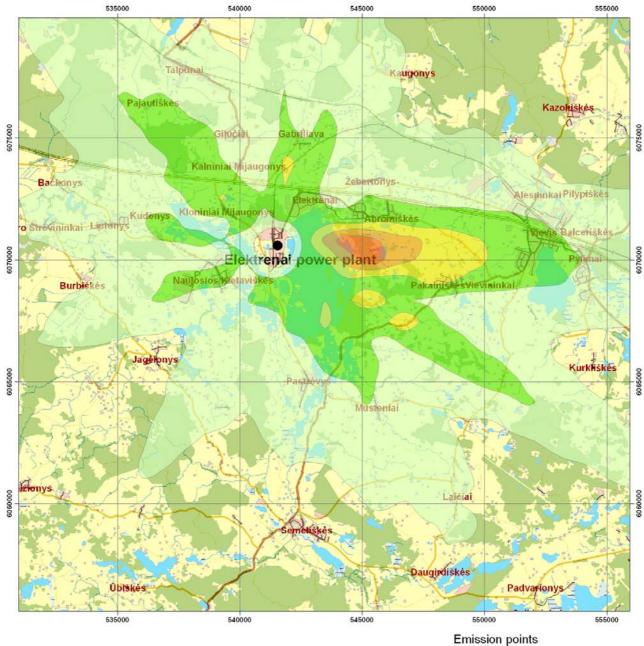
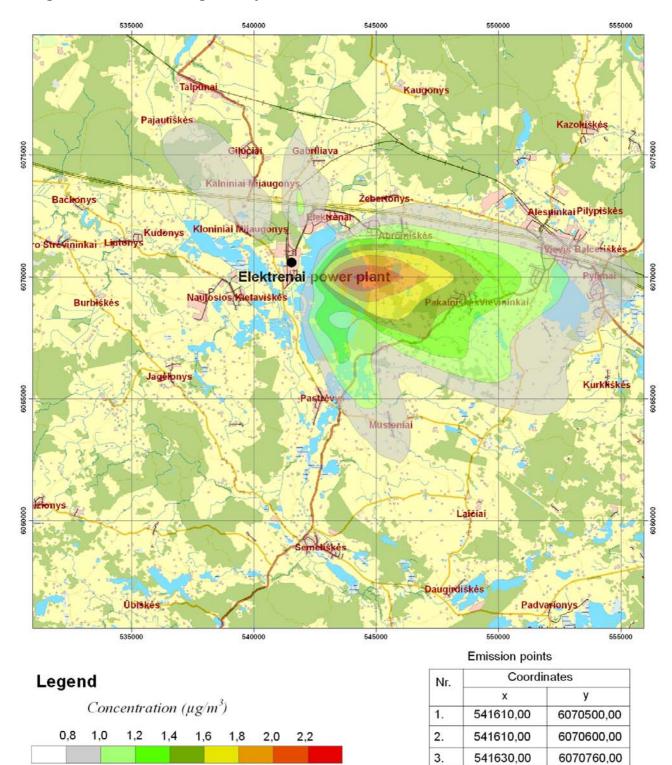


Figure 7.1: 99.79th percentile of hourly average PCs of NO_x

Legend



Coordinates Т

Nr.	Coordinates			
	x	У		
1.	541610,00	6070500,00		
2.	541610,00	6070600,00		
3.	541630,00	6070760,00		

0 2,5 5 Kilometers M1:100 000

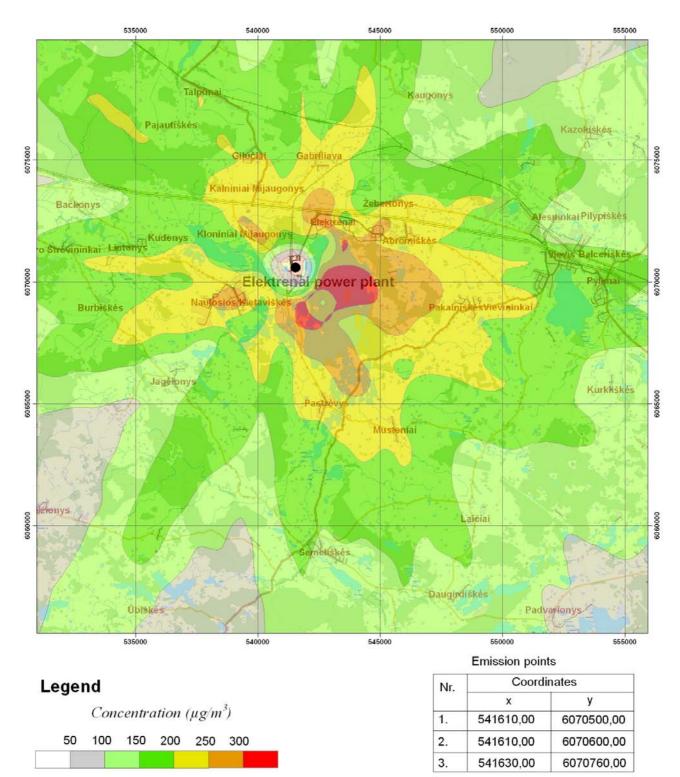
Figure 7.2. Annual average PCs of NO_x

0 2,5 5 Kilometers M 1 : 100 000

7.2 Predicted concentrations of SO₂

Table 7.4 shows the maximum predicted PC to the ground level concentrations of SO_2 , and the location at which the maximum concentration occurs.

There are no exceedences of the Air Quality Limit values for SO₂.


The maximum 99.73^{rd} percentile of hourly average SO₂ PEC is $348\mu g/m^3$, 99% of the $350\mu g/m^3$ limit value. Figure 7.3 shows a contour plot of the 99.73^{rd} percentile of hourly average SO₂.

The maximum 99.18th percentile of 24-hour average SO₂ PEC is $81\mu g/m^3$, 65% of the 125 $\mu g/m^3$ limit value. Figure 7.4 shows a contour plot of the 99.18th percentile of 24-hour average SO₂.

Year	Limit value	Measured as	Limit value value	PC	% PC of limit value	Significant release?	х, у
2005	Short-term AQO	99.73 rd percentile of 1 hour averages	350	348	99	Yes	543500, 6070000
2005	Short-term AQO	99.18 th percentile of 24 hour averages	125	81	65	Yes	543500, 6070000

*Table 7.4: Maximum predicted SO*₂ *concentrations (\mu g/m^3)*

Figure 7.3: 99.73rd percentile of hourly average PCs of SO₂

0 2,5 5 Kilometers

M 1 : 100 000

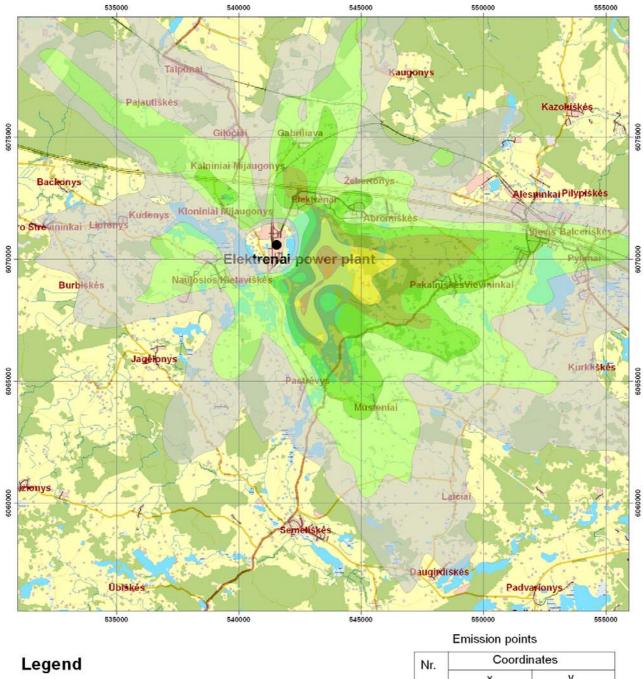
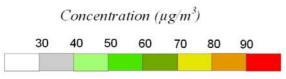



Figure 7.4: 99.18th percentile of hourly average PCs of SO₂

у
070500,00
070600,00
070760,00

M 1 : 100 000

7.5 Predicted concentrations of CO

Table 7.8 shows the maximum predicted PC to the ground level concentrations of CO, and the location at which the concentrations occur.

Neither the predicted 8-hour average PC of CO nor the maximum predicted annual average PC of CO is significant.

Figures 7.5 and 7.6 show the 99.79^{th} percentile of hourly average PEC and the annual average PEC of NO₂.

Year	Limit value	Measured as	Limit value value	РС	% PC of limit value	Significant release?	x, y
2005	Short-term AQO	Maximum daily running 8-hour mean	10	0.01	< 1	No	543500, 6070000
2005	Long-term EAL	Annual average	0.35	0.0003	< 1	No	543500, 6070000

 Table 7.8: Maximum predicted CO concentrations (mg/m³)

7.6 Predicted concentrations of PM₁₀

Table 7.9 shows the maximum predicted PC to the ground level concentrations of PM_{10} , and the location at which the concentrations occur.

Neither the predicted 8-hour average PC of PM_{10} nor the maximum predicted annual average PC of PM_{10} is significant.

Year	Limit value	Measured as	Limit value value	РС	% PC of limit value	Significant release?	х, у
2005	Short-term AQO	90.41 st percentile of 24 hour averages	50	0.02	< 1	No	546833, 6069167
2005	Long-term AQO	Annual average	40	0.01	< 1	No	545167, 6070000

Table 7.9: Maximum predicted PM_{10} concentrations ($\mu g/m^3$)

8. Discussion

In order to quantify the impact of emissions to air from Elektrenai power plant, Elektrenai, dispersion modelling of all emissions from the processes on the site was carried out.

 NO_2 and SO_2 were found to be significant whereas CO and PM_{10} were not found to be significant. There were no predicted exceedences of the limit values for NO_2 , SO_2 , CO or PM_{10} for the protection of human health.