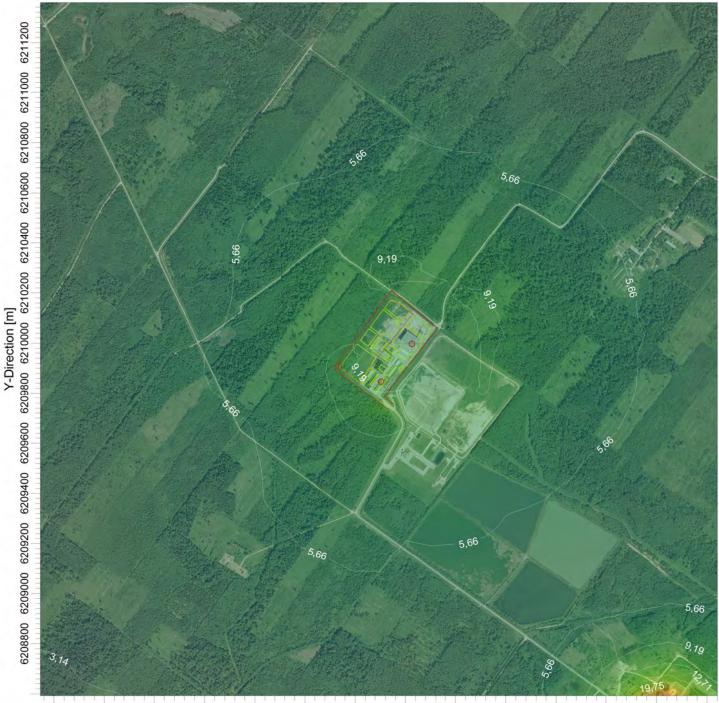

454400 454600 454800 455000 X-Direction [m]

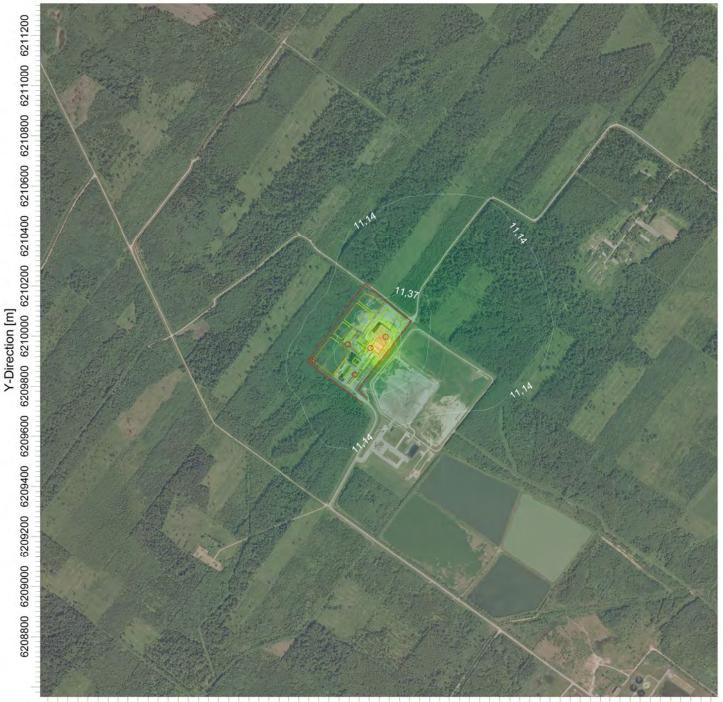
LE OF HIGH 1S	T HIGH 8-HR	ALUES FOR S	OURCE GROUP	: ALL				ug/m^3
11,305	21,073	30,841	40,609	50,377	60,145	69,913	79,681	89,449
10000 ug/m3		sourc	SES:	COMPANY NA	MÉ:			
				MODELER:				
				SCALE:		1:15.000 0,5 km		
		MAX: 89,44	4894 ug/m^3				PROJECT NO.:	
		11,305 21,073	11,305 21,073 30,841 10000 ug/m3 11 RECEP 1600 OUTPU Com MAX:	11,305 21,073 30,841 40,609 10000 ug/m3 SOURCES: 11 RECEPTORS: 1600 OUTPUT TYPE: Concentration	SOURCES: COMPANY N/ 10000 ug/m3 11 RECEPTORS: MODELER: 1600	11,305 21,073 30,841 40,609 50,377 60,145 SOURCES: 10000 ug/m3 11 COMPANY NAME: IOURDEU: 10000 ug/m3 0 0 COMPANY NAME: 10000 ug/m3 0 0 0000 ug/m3 0 0 0	11,305 21,073 30,841 40,609 50,377 60,145 69,913 10000 ug/m3 sources: COMPANY NAME: 11 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: 1:15.000 OUTPUT TYPE: SCALE: 1:15.000 MAX: MAX: MAX: 0	11,305 21,073 30,841 40,609 50,377 60,145 69,913 79,681 10000 ug/m3 SOURCEE: COMPANY NAME: 11 Interval of the second secon

454400 454600 454800 455000 453600 453800 454000 454200 455200 455400 455600 455800 456000 X-Direction [m]

PLOT F	ILE OF 99.80TH	PERCENTILE 1	-HR VALUES F	OR SOURCE GI	ROUP: ALL				ug/m^3
6,737	17,906	29,074	40,243	51,411	62,580	73,748	84,917	96,085	107,254
сомментя: Ribinè vertè -	200 ug/m3		sourc	ES:	COMPANY NA	AME:			
			RECEP		MODELER:				
				T TYPE: centration	SCALE:		1:15.000 0,5 km		
			MAX: 107,2	2537 ug/m^3				PROJECT NO .:	
ERMOD View - Lak	es Environmental Software			2537 ug/m^3				C:\AERMOD projects\Tol	sika RCH


454200 454400 454600 454800 455000 455200 453600 453800 454000 455400 455600 455800 456000 X-Direction [m]

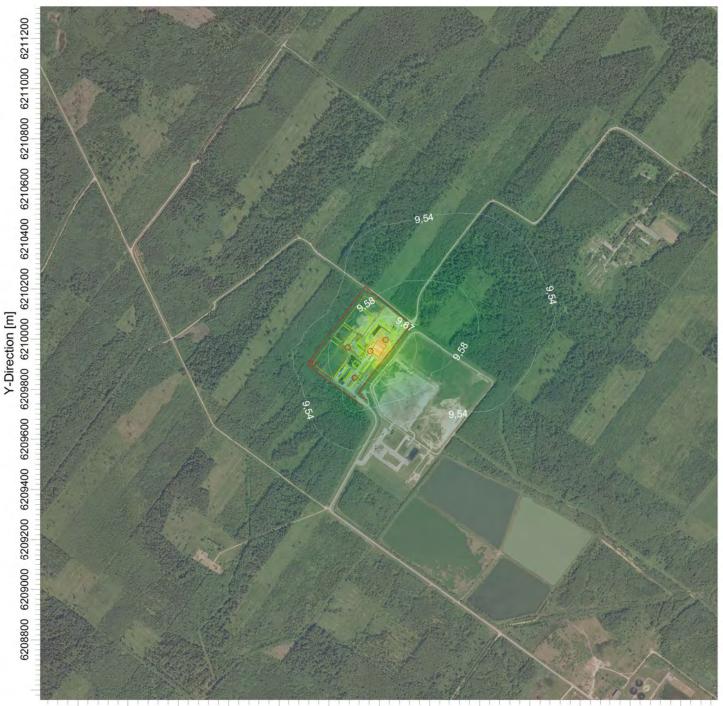
LE OF ANNU	AL VALUES FO	OR SOURCE	GROUP: ALL				ug/m^3
4,377	5,191	7,906	10,820 15,735	18,649	21,564 24,	478 27,393	30,308
40 ug/m3			sources: 11	COMPANY NAME:			
			RECEPTORS: 1600	MODELER:			
			OUTPUT TYPE: Concentration	SCALE:	1:15.000 0,5 km)	
			мах: 30,3075 ug/m^3			PROJECT NO.:	
		4,377 5,191	4,377 5,191 7,906	- 40 ug/m3 SOURCES: 11 RECEPTORS: 1600 OUTPUT TYPE: Concentration MAX:	4,377 5,191 7,906 10,820 15,735 18,649 SOURCES: COMPANY NAME: 40 ug/m3 11 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: Concentration 0	4,377 5,191 7,906 10,820 15,735 18,649 21,564 24 40 ug/m3 SOURCES: COMPANY NAME: 11 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: 1:15.000 OUTPUT TYPE: SCALE: 1:15.000 MAX: MAX: Image: Company Name:	4,377 5,191 7,906 10,820 15,735 18,649 21,564 24,478 27,393 40 ug/m3 SOURCES: COMPANY NAME: 11 International Company Name: International Company Name: </td


453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 X-Direction [m]

31 24,96
or

453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 X-Direction [m]

PLOT F	ILE OF 99.701	TH PERCENTIL	E 1-HR VAL	UES FOR SOUR	CE GROUP:	ALL	-					ug/m^3
2,142	3,142	5,665	9,187	12,710	16,232	19,7	'54	23,277	26,79	99	30,322	33,844
COMMENTS: Ribinë vertë				SOURCES:	COMPANY N	IAME:						
				RECEPTORS:		MODELER:						
				OUTPUT TYPE: Concentration	ı	SCALE:		4 - 3	1:15.000 0,5 km			
				MAX: 33,844 ug/m^3	3					PROJECT N	0.:	
RMOD View - La	kes Environmental Soft	tware		No of Section						CVAER	OD projects\Tok	sika RCH\SO2\so2


453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 456000 X-Direction [m]

137								
	11,370	12,002	12,334	12,666	12,998	13,330	13,662	13,994
3		sourc 6	ES:	COMPANY NA	MË:			
			RECEPTORS: 1600					
				SCALE:		1:15.000 0,5 km		
		MAX: 13,99	94 ug/m^3				PROJECT NO.:	
	3 nental Software		3 6 RECEP 1600 OUTPU Conc MAX: 13,95	3 6 RECEPTORS: 1600 OUTPUT TYPE: Concentration	3 6 RECEPTORS: MODELER: 1600 OUTPUT TYPE: OUTPUT TYPE: SCALE: Concentration 0 MAX: Image: Concentration	3 6 RECEPTORS: MODELER: 1600 0 OUTPUT TYPE: SCALE: Concentration 0 MAX:	3 6 RECEPTORS: MODELER: 1600 0 OUTPUT TYPE: SCALE: 1:15.000 Concentration 0 MAX:	3 6 RECEPTORS: MODELER: 1600 0 OUTPUT TYPE: SCALE: 1:15.000 Concentration 0 MAX: PROJECT NO.:

453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 456000 X-Direction [m]

PLOT F	ILE OF ANNU	AL VALUES FO	OR SOURCE	GROUP: ALL						ug/m^3
11,003	11,063	11,184	11,365	11,545	11,726	11,907	12,088	12,26	68 12,449	12,630
COMMENTS: Ribinė vertė	- 40 ug/m3			SOURCES:		COMPANY NAME:				
				RECEPTORS: 1600		MODELER:				
				OUTPUT TYPE: Concentration		SCALE:	4 1	1:15.000 0,5 km		
				MAX: 12,6297 ug/m^3	3				PROJECT NO.:	
RMOD View - La	kes Environmental Soft	ware	_						C:\AERMOD projects\Toks	ika RCH\B\KD10\kd1(

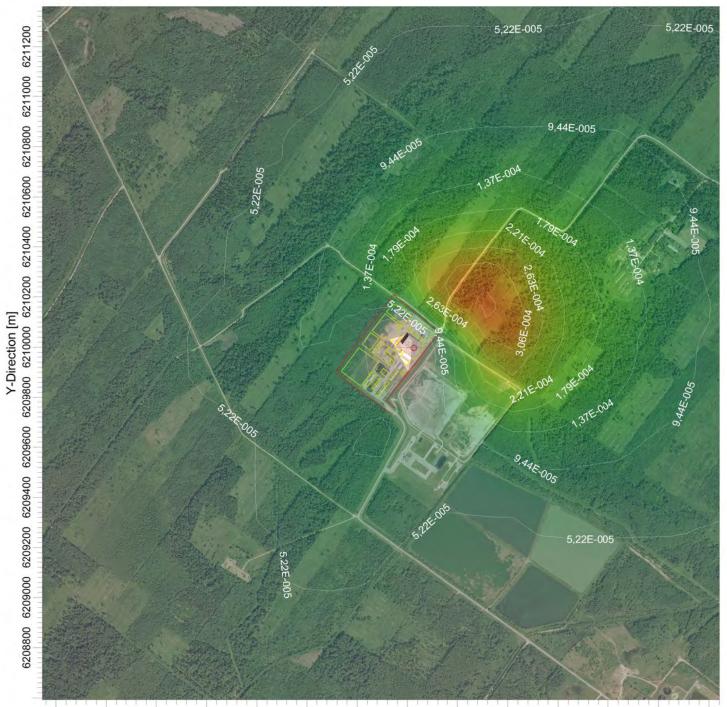
454400 454600 454800 455000 455200 453600 453800 454000 454200 455400 455600 455800 456000 X-Direction [m]

PLOT FI	LE OF ANNUAL	VALUES FOR S	SOURCE GROU	P: ALL					ug/m^3
9,502	9,542	9,582	9,672	9,862	9,952	10,043	10,133	10,223	10,313
COMMENTS: Ribinė vertė -	25 ug/m3		SOURC 6	ES:	COMPANY N	AME:			
			RECEP		MODELER:				
			OUTPU Conc	T TYPE: centration	SCALE:		1:15.000 0,5 km		
			MAX: 10,31	3 ug/m^3				PROJECT NO.:	
RMOD View - Lak	es Environmental Softwar	e		9			_	C:\AERMOD projects\Toks	ika RCH\B\KD2\k

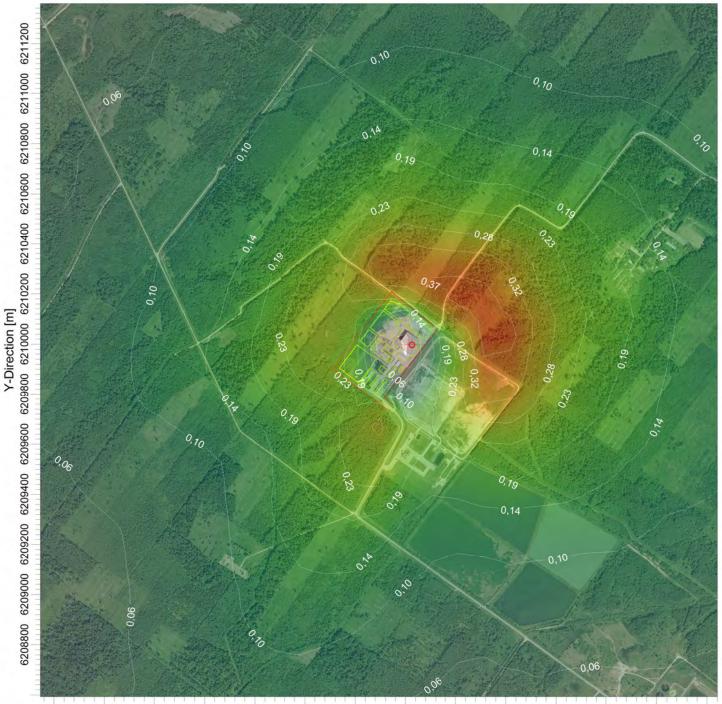
PROJECT TITLE:

Lakūs organiniai junginiai (LOJ) Vienos valandos vidurkio koncentracijos įvertinus foninę taršą

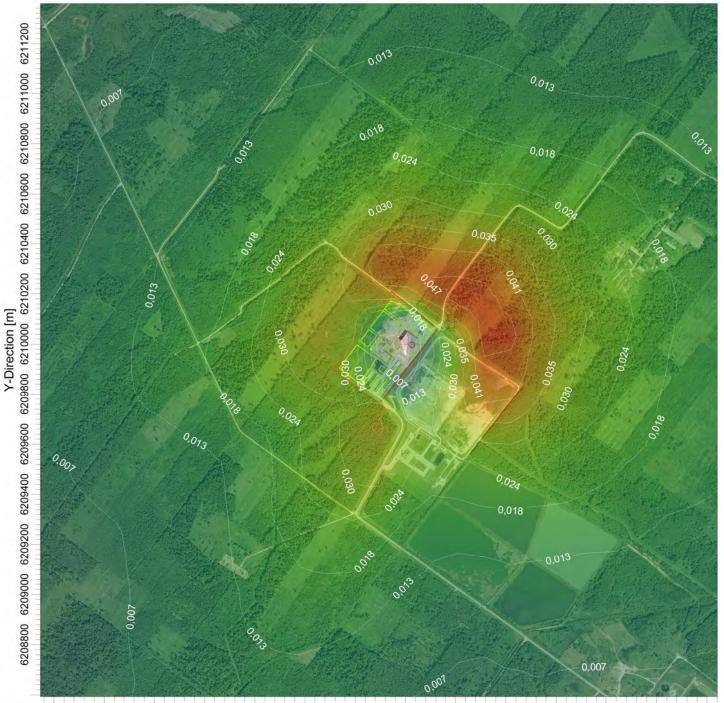
453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 456000 X-Direction [m]


PLOT F	ILE OF 98.50TH	PERCENTILE 1	-HR VALUES F	OR SOURCE GR	OUP: ALL				ug/m^3
0,057	0,790	1,323	2,456	3,588	5,721	6,854	7,987	9,120	10,253
сомментs: Ribiné verté -	- 5000 ug/m3		source 8	ES:	COMPANY N	AME:			
			RECEP		MODELER:				
				T TYPE: centration	SCALE:		1:15.000 0,5 km		
			MAX: 10,2	5252 ug/m^3				PROJECT NO.:	
RMOD View - La	kes Environmental Software	e						C:\AERMOD projects\To	ksika RCH\B\LOJ\lojI

453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 X-Direction [m]

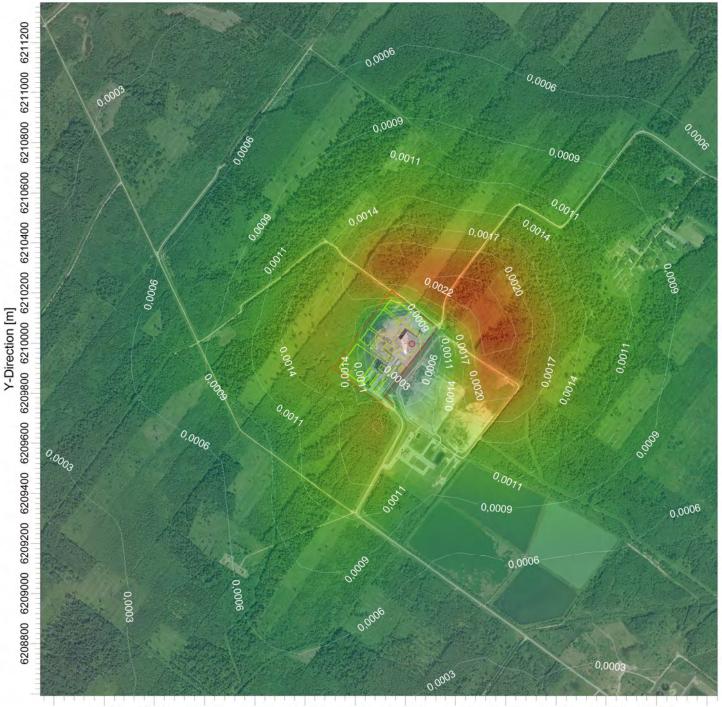

PLOT FILE OF 98.50TH PERCE	NTILE 1-HR VALUES FO	DR SOURCE GROUP: ALL		ug/m^3
0,033 0,226 0,	878 1,700	2,922 6,144	7,366 8,58	8 9,811 11,03
COMMENTS: Ribinė vertė - 200 ug/m3	SOURC 2	ES: COMPANY N	NAME:	
	RECEP 1600			
	очтри Сопс	T TYPE: SCALE:	1:15.00	
	MAX: 11,03	3273 ug/m^3		PROJECT NO.:

Arsenas ir jo junginiai Metų vidurkio koncentracijos


453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 X-Direction [m]

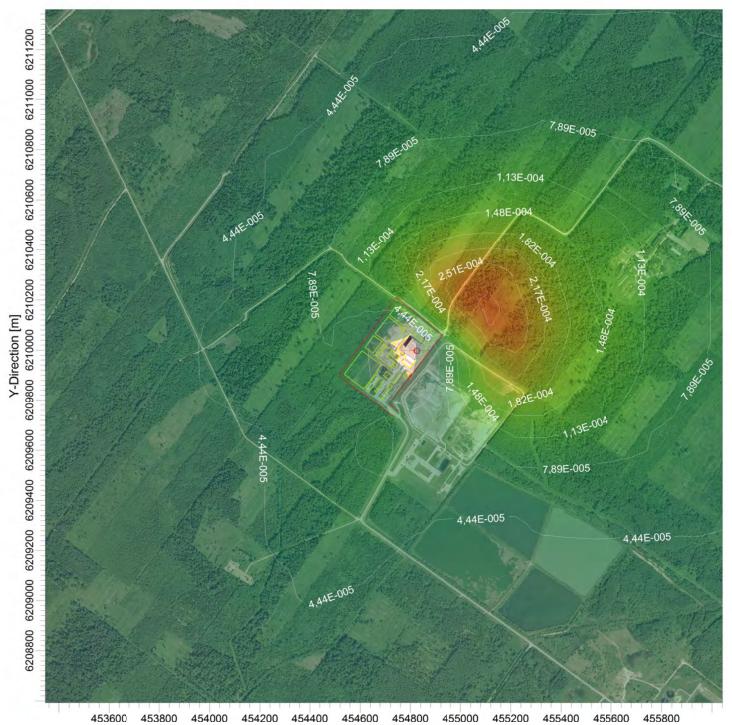
PLOT F	ILE OF ANNUAL	VALUES FOR	SOURCE GRO	UP: ALL					ug/m^3
1,00E-005	5,22E-005	9,44E-005	1,37E-004	1,79E-004	2,21E-004	2,63E-004	3,06E-004	3,48E-004	3,90E-004
comments: Ribiné verté - 6	ng/m3		SOURCE 1 RECEPT 1600	ORS:	COMPANY N MODELER:	AME:			
			OUTPUT Conc	TYPE: entration	SCALE:		1:15.000 0,5 km		
			MAX: 0,000	39 ug/m^3				PROJECT NO.:	

453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 X-Direction [m]


OTH PERCENTILE	T-HR VALUES FO	JR SOURCE GRO	JUP: ALL				ug/m^3
0,100	0,145	0,189	0,233	0,278	0,322	0,366	0,41
	sour	CES:	COMPANY NA	MĘ:			
Ribinė vertė - 200 ug/m3		RECEPTORS: 1600					
			SCALE:		1:15.000 0,5 km		
	MAX: 0,41	052 ug/m^3				PROJECT NO .:	
		0,100 0,145 SOUR 1 RECEP 160 OUTPU Con MAX:	0,100 0,145 0,189 OUTPUT 11/2 OUTPUT 11/2 Concentration	SOURCES: COMPANY NA 1 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: Concentration 0 MAX: Image: Company NA	0,100 0,145 0,189 0,233 0,278 SOURCES: COMPANY NAME: 1 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: Concentration 0	0,100 0,145 0,189 0,233 0,278 0,322 SOURCES: COMPANY NAME: 1 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: 1:15.000 OUTPUT TYPE: SCALE: 1:15.000 MAX: MAX: Image: Company Name:	0,100 0,145 0,189 0,233 0,278 0,322 0,366 SOURCES: COMPANY NAME: 1 RECEPTORS: 1600 OUTPUT TYPE: 0.01PUT TYPE: SCALE: 1:15.000 MAX: PROJECT NO:

453600 453800 454000 454200 454400 454600 454800 455000 455200 455400 455600 455800 X-Direction [m]

LE OF 98.50T	H PERCENTIL	E 1-HR VAL	UES FOR SOURCE	GROUP: A	ALL				ug/m^3
0,002	0,007	0,013	0,018	0,024	0,030	0,035	0,041	0,047	0,052
- 20 ug/m3			sources:		COMPANY NAME:				
			RECEPTORS: 1600		MODELER:				
			OUTPUT TYPE: Concentration		SCALE:				
			MAX: 0,05225 ug/m^3				PR	DJECT NO.:	
	0,002	0,002 0,007	0,002 0,007 0,013	0,002 0,007 0,013 0,018 - 20 ug/m3 I RECEPTORS: 1600 OUTPUT TYPE: Concentration MAX:	0,002 0,007 0,013 0,018 0,024 - 20 ug/m3 -	- 20 ug/m3 SOURCES: COMPANY NAME: 1 RECEPTORS: MODELER: 1600 OUTPUT TYPE: SCALE: Concentration 0 MAX: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0,002 0,007 0,013 0,018 0,024 0,030 0,035 - 20 ug/m3 I RECEPTORS: COMPANY NAME: 1 RECEPTORS: MODELER: 1600 0UTPUT TYPE: SCALE: 1 Concentration 0	0,002 0,007 0,013 0,018 0,024 0,030 0,035 0,041 -20 ug/m3 -20 ug/m	0,002 0,007 0,013 0,018 0,024 0,030 0,035 0,041 0,047 - 20 ug/m3 -


Gyvsidabris ir jo junginiai Valandos vidurkio koncentracijos

454600 454800 X-Direction [m]

PLOT F	ILE OF 98.50TH	PERCENTILE 1	-HR VALUES FO	OR SOURCE GR	OUP: ALL				ug/m^3
0,0001	0,0003	0,0006	0,0009	0,0011	0,0014	0,0017	0,0020	0,0022	0,0025
COMMENTS: Ribiné verté -	- 0,9 ug/m3		sourc 1	ES:	COMPANY N	AME:			
				RECEPTORS:					
			оитри	T TYPE: centration	SCALE:		1:15.000 0,5 km		
			MAX: 0,002	249 ug/m^3				PROJECT NO .:	
ERMOD View - Lak	kes Environmental Softwar	e	0,002	249 ug/m^3				C:VAERMOD project	s\Toksika RCH\

Kadmis ir jo junginiai Metų vidurkio koncentracijos

X-Direction [m]

PLOT F	FILE OF ANNU	AL VALUES F	OR SOURCE	E GROUP: ALL						ug/m^3
1,00E-005 comments:	1,00E-005	4,44E-005	7,89E-005	1,13E-004 SOURCES:	1,48E-004	1,82E-004 COMPANY NAME:	2,17E-004	2,51E-0	004 2,86E-004	3,20E-004
Ribinè verté - 5 ng/m3				1						
				RECEPTORS: 1600		MODELER:				
				OUTPUT TYPE: Concentration		SCALE:	4	1:15.000 0,5 km		
				MAX: 0,00032 ug/m^3					PROJECT NO .:	